容器
Java容器之Map
Map架构
- Map 是映射接口,Map 中存储的内容是键值对(key-value)。
- AbstractMap 是继承于 Map 的抽象类,它实现了 Map 中的大部分 API。其它 Map 的实现类可以通过继承 AbstractMap 来减少重复编码。
- SortedMap 是继承于 Map 的接口。SortedMap 中的内容是排序的键值对,排序的方法是通过比较器(Comparator)。
- NavigableMap 是继承于 SortedMap 的接口。相比于 SortedMap,NavigableMap 有一系列的导航方法;如"获取大于/等于某对象的键值对"、“获取小于/等于某对象的键值对”等等。
- TreeMap 继承于 AbstractMap,且实现了 NavigableMap 接口;因此,TreeMap 中的内容是“有序的键值对”!
- HashMap 继承于 AbstractMap,但没实现 NavigableMap 接口;因此,HashMap 的内容是“键值对,但不保证次序”!
- Hashtable 虽然不是继承于 AbstractMap,但它继承于 Dictionary(Dictionary 也是键值对的接口),而且也实现 Map 接口;因此,Hashtable 的内容也是“键值对,也不保证次序”。但和 HashMap 相比,Hashtable 是线程安全的,而且它支持通过 Enumeration 去遍历。
- WeakHashMap 继承于 AbstractMap。它和 HashMap 的键类型不同,WeakHashMap 的键是弱键。
HashMap类
HashMap 要点
HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。
基于哈希表的 Map 接口实现。该实现提供了所有可选的 Map 操作,并允许使用空值和空键。 (HashMap 类大致等同于 Hashtable,除了它是不同步的并且允许为空值。)这个类不保序;特别是,它的元素顺序可能会随着时间的推移变化。
HashMap 的一个实例有两个影响其性能的参数:初始容量和负载因子。
容量是哈希表中桶的数量,初始容量就是哈希表创建时的容量。
加载因子是散列表在其容量自动扩容之前被允许的最大饱和量。当哈希表中的 entry 数量超过负载因子和当前容量的乘积时,散列表就会被重新映射(即重建内部数据结构),一般散列表大约是存储桶数量的两倍。
通常,默认加载因子(0.75)在时间和空间成本之间提供了良好的平衡。较高的值会减少空间开销,但会增加查找成本(反映在大部分 HashMap 类的操作中,包括 get 和 put)。在设置初始容量时,应考虑映射中的条目数量及其负载因子,以尽量减少重新运行操作的次数。如果初始容量大于最大入口数除以负载因子,则不会发生重新刷新操作。
如果许多映射要存储在 HashMap 实例中,使用足够大的容量创建映射将允许映射存储的效率高于根据需要执行自动重新散列以增长表。请注意,使用多个具有相同 hashCode() 的密钥是降低任何散列表性能的一个可靠方法。为了改善影响,当键是 Comparable 时,该类可以使用键之间的比较顺序来帮助断开关系。
HashMap 不是并发安全的。
HashMap 源码
HashMap 定义
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
// 该表在初次使用时初始化,并根据需要调整大小。分配时,长度总是2的幂。
transient Node<K,V>[] table;
// 保存缓存的 entrySet()。请注意,AbstractMap 字段用于 keySet() 和 values()。
transient Set<Map.Entry<K,V>> entrySet;
// map 中的键值对数
transient int size;
// 这个HashMap被结构修改的次数结构修改是那些改变HashMap中的映射数量或者修改其内部结构(例如,重新散列)的修改。
transient int modCount;
// 下一个调整大小的值(容量*加载因子)。
int threshold;
// 散列表的加载因子
final float loadFactor;
}
构造方法
public HashMap(); // 默认加载因子0.75
public HashMap(int initialCapacity); // 默认加载因子0.75;以 initialCapacity 初始化容量
public HashMap(int initialCapacity, float loadFactor); // 以 initialCapacity 初始化容量;以 loadFactor 初始化加载因子
public HashMap(Map<? extends K, ? extends V> m) // 默认加载因子0.75
put 方法的实现
put 方法大致的思路为:
对 key 的 hashCode()做 hash,然后再计算 index;
如果没碰撞直接放到 bucket 里;
如果碰撞了,以链表的形式存在 buckets 后;
如果碰撞导致链表过长(大于等于 TREEIFY_THRESHOLD),就把链表转换成红黑树;
如果节点已经存在就替换 old value(保证 key 的唯一性)
如果 bucket 满了(超过 load factor * current capacity),就要 resize。
具体代码的实现如下:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// tab 为空则创建
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 计算 index,并对 null 做处理
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 节点存在
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 该链为树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 该链为链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 写入
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
get 方法的实现
在理解了 put 之后,get 就很简单了。大致思路如下:
bucket 里的第一个节点,直接命中;
如果有冲突,则通过 key.equals(k)去查找对应的 entry
若为树,则在树中通过 key.equals(k)查找,O(logn);
若为链表,则在链表中通过 key.equals(k)查找,O(n)。
具体代码的实现如下:
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 直接命中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 未命中
if ((e = first.next) != null) {
// 在树中 get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 在链表中 get
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
hash 方法的实现
在 get 和 put 的过程中,计算下标时,先对 hashCode 进行 hash 操作,然后再通过 hash 值进一步计算下标,如下图所示:
在对 hashCode() 计算 hash 时具体实现是这样的:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
可以看到这个方法大概的作用就是:高 16bit 不变,低 16bit 和高 16bit 做了一个异或。
在设计 hash 方法时,因为目前的 table 长度 n 为 2 的幂,而计算下标的时候,是这样实现的(使用&位操作,而非%求余):
(n - 1) & hash
设计者认为这方法很容易发生碰撞。为什么这么说呢?不妨思考一下,在 n - 1 为 15(0x1111) 时,其实散列真正生效的只是低 4bit 的有效位,当然容易碰撞了。
因此,设计者想了一个顾全大局的方法(综合考虑了速度、作用、质量),就是把高 16bit 和低 16bit 异或了一下。设计者还解释到因为现在大多数的 hashCode 的分布已经很不错了,就算是发生了碰撞也用 O(logn)的 tree 去做了。仅仅异或一下,既减少了系统的开销,也不会造成的因为高位没有参与下标的计算(table 长度比较小时),从而引起的碰撞。
如果还是产生了频繁的碰撞,会发生什么问题呢?作者注释说,他们使用树来处理频繁的碰撞(we use trees to handle large sets of collisions in bins),在 JEP-180 中,描述了这个问题:
Improve the performance of java.util.HashMap under high hash-collision conditions by using balanced trees rather than linked lists to store map entries. Implement the same improvement in the LinkedHashMap class.
之前已经提过,在获取 HashMap 的元素时,基本分两步:
首先根据 hashCode()做 hash,然后确定 bucket 的 index;
如果 bucket 的节点的 key 不是我们需要的,则通过 keys.equals()在链中找。
在 JDK8 之前的实现中是用链表解决冲突的,在产生碰撞的情况下,进行 get 时,两步的时间复杂度是 O(1)+O(n)。因此,当碰撞很厉害的时候 n 很大,O(n)的速度显然是影响速度的。
因此在 JDK8 中,利用红黑树替换链表,这样复杂度就变成了 O(1)+O(logn)了,这样在 n 很大的时候,能够比较理想的解决这个问题,在 JDK8:HashMap 的性能提升一文中有性能测试的结果。
resize 的实现
当 put 时,如果发现目前的 bucket 占用程度已经超过了 Load Factor 所希望的比例,那么就会发生 resize。在 resize 的过程,简单的说就是把 bucket 扩充为 2 倍,之后重新计算 index,把节点再放到新的 bucket 中。
当超过限制的时候会 resize,然而又因为我们使用的是 2 次幂的扩展(指长度扩为原来 2 倍),所以,元素的位置要么是在原位置,要么是在原位置再移动 2 次幂的位置。
怎么理解呢?例如我们从 16 扩展为 32 时,具体的变化如下所示:
因此元素在重新计算 hash 之后,因为 n 变为 2 倍,那么 n-1 的 mask 范围在高位多 1bit(红色),因此新的 index 就会发生这样的变化:
因此,我们在扩充 HashMap 的时候,不需要重新计算 hash,只需要看看原来的 hash 值新增的那个 bit 是 1 还是 0 就好了,是 0 的话索引没变,是 1 的话索引变成“原索引+oldCap”。可以看看下图为 16 扩充为 32 的 resize 示意图:
这个设计确实非常的巧妙,既省去了重新计算 hash 值的时间,而且同时,由于新增的 1bit 是 0 还是 1 可以认为是随机的,因此 resize 的过程,均匀的把之前的冲突的节点分散到新的 bucket 了。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的 2 倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的 resize 上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个 bucket 都移动到新的 buckets 中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
小结
我们现在可以回答开始的几个问题,加深对 HashMap 的理解:
什么时候会使用 HashMap?他有什么特点?
是基于 Map 接口的实现,存储键值对时,它可以接收 null 的键值,是非同步的,HashMap 存储着 Entry(hash, key, value, next)对象。
你知道 HashMap 的工作原理吗?
通过 hash 的方法,通过 put 和 get 存储和获取对象。存储对象时,我们将 K/V 传给 put 方法时,它调用 hashCode 计算 hash 从而得到 bucket 位置,进一步存储,HashMap 会根据当前 bucket 的占用情况自动调整容量(超过 Load Facotr 则 resize 为原来的 2 倍)。获取对象时,我们将 K 传给 get,它调用 hashCode 计算 hash 从而得到 bucket 位置,并进一步调用 equals()方法确定键值对。如果发生碰撞的时候,Hashmap 通过链表将产生碰撞冲突的元素组织起来,在 Java 8 中,如果一个 bucket 中碰撞冲突的元素超过某个限制(默认是 8),则使用红黑树来替换链表,从而提高速度。
你知道 get 和 put 的原理吗?equals()和 hashCode()的都有什么作用?
通过对 key 的 hashCode()进行 hashing,并计算下标( n-1 & hash),从而获得 buckets 的位置。如果产生碰撞,则利用 key.equals()方法去链表或树中去查找对应的节点
你知道 hash 的实现吗?为什么要这样实现?
在 Java 1.8 的实现中,是通过 hashCode()的高 16 位异或低 16 位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在 bucket 的 n 比较小的时候,也能保证考虑到高低 bit 都参与到 hash 的计算中,同时不会有太大的开销。
如果 HashMap 的大小超过了负载因子(load factor)定义的容量,怎么办?
如果超过了负载因子(默认 0.75),则会重新 resize 一个原来长度两倍的 HashMap,并且重新调用 hash 方法。
ConcurrentHashMap
HashTable 和HashMap类似,但它是线程安全的,这意味着同一时刻多个线程可以同时写入HashTable并且不会导致数据不一致。它是遗留类,不应该去使用它。
现在可以使用ConcurrentHashMap来支持线程安全,并且ConcurrentHashMap的效率会更高,因为ConcurrentHashMap引入了分段锁。
1.存储结构
static final class HashEntry<K,V>{
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
}
ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMao 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使并发度更高(并发度就是Segment的个数)。
Segment继承自 ReentrantLock
static final class Segement<K,V> extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L;
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
transient volatile HashEntry<K,V>[] table;
transient int count;
transient int modCount;
transient int threshold;
final float loadFactor;
}
final Segment<K,V>[] segments;
默认的并发级别为16,也就是说默认创建16个 Segment。
static final int DEFAULT_CONCURRENCY_LEVEL = 16;
2.size操作
每个 Segment 维护了一个 count 变量来统计该 Segment 中的键值对个数。
/**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
*/
transient int count;
在执行 size 操作时,需要遍历所有 Segment 然后把 count 累计起来。
ConcurrentHashMap 在执行 size 操作时先尝试不加锁,如果连续两次不加锁操作得到的结果一致,那么可以认为这个结果是正确的。
尝试次数使用 RETRIES_BEFORE_LOCK 定义,该值为 2,retries 初始值为 -1,因此尝试次数为 3。
如果尝试的次数超过 3 次,就需要对每个 Segment 加锁。
/**
* Number of unsynchronized retries in size and containsValue
* methods before resorting to locking. This is used to avoid
* unbounded retries if tables undergo continuous modification
* which would make it impossible to obtain an accurate result.
*/
static final int RETRIES_BEFORE_LOCK = 2;
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
// 超过尝试次数,则对每个 Segment 加锁
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
// 连续两次得到的结果一致,则认为这个结果是正确的
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}
3. JDK 1.8 的改动
JDK 1.7 使用分段锁机制来实现并发更新操作,核心类为 Segment,它继承自重入锁 ReentrantLock,并发度与 Segment 数量相等。
JDK 1.8 使用了 CAS 操作来支持更高的并发度,在 CAS 操作失败时使用内置锁 synchronized。
并且 JDK 1.8 的实现也在链表过长时会转换为红黑树。
LinkedHashMap
存储结构
继承自 HashMap,因此具有和 HashMap 一样的快速查找特性。
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>
内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序。
/**
* The head (eldest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> head;
/**
* The tail (youngest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> tail;
accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。
final boolean accessOrder;
LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用。
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
afterNodeAccess()
当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点。
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
afterNodeInsertion()
在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。
evict 只有在构建 Map 的时候才为 false,在这里为 true。
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
LRU 缓存
以下是使用 LinkedHashMap 实现的一个 LRU 缓存:
- 设定最大缓存空间 MAX_ENTRIES 为 3;
- 使用 LinkedHashMap 的构造函数将 accessOrder 设置为 true,开启 LRU 顺序;
- 覆盖 removeEldestEntry() 方法实现,在节点多于 MAX_ENTRIES 就会将最近最久未使用的数据移除。
class LRUCache<K, V> extends LinkedHashMap<K, V> {
private static final int MAX_ENTRIES = 3;
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > MAX_ENTRIES;
}
LRUCache() {
super(MAX_ENTRIES, 0.75f, true);
}
}
public static void main(String[] args) {
LRUCache<Integer, String> cache = new LRUCache<>();
cache.put(1, "a");
cache.put(2, "b");
cache.put(3, "c");
cache.get(1);
cache.put(4, "d");
System.out.println(cache.keySet());
}
[3, 1, 4]
TreeMap
TreeMap 要点
- TreeMap 基于红黑树实现。
- TreeMap 是有序的。它的排序规则是:根据 map 中的 key 的自然顺序或提供的比较器的比较顺序。
- TreeMap 不是并发安全的。
TreeMap 源码
put 方法
public V put(K key, V value) {
Entry<K,V> t = root;
// 如果根节点为 null,插入第一个节点
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
// 每个节点的左孩子节点的值小于它;右孩子节点的值大于它
// 如果有比较器,使用比较器进行比较
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
// 没有比较器,使用 key 的自然顺序进行比较
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
// 通过上面的遍历未找到 key 值,则新插入节点
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
// 插入后,为了维持红黑树的平衡需要调整
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
get 方法
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
// 按照二叉树搜索的方式进行搜索,搜到返回
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
remove 方法
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// 如果当前节点有左右孩子节点,使用后继节点替换要删除的节点
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) { // 要删除的节点有一个孩子节点
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
D:\codes\zp\java\database\docs\redis\分布式锁.md p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
TreeMap 示例
public class TreeMapDemo {
private static final String[] chars = "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z".split(" ");
public static void main(String[] args) {
TreeMap<Integer, String> treeMap = new TreeMap<>();
for (int i = 0; i < chars.length; i++) {
treeMap.put(i, chars[i]);
}
System.out.println(treeMap);
Integer low = treeMap.firstKey();
Integer high = treeMap.lastKey();
System.out.println(low);
System.out.println(high);
Iterator<Integer> it = treeMap.keySet().iterator();
for (int i = 0; i <= 6; i++) {
if (i == 3) { low = it.next(); }
if (i == 6) { high = it.next(); } else { it.next(); }
}
System.out.println(low);
System.out.println(high);
System.out.println(treeMap.subMap(low, high));
System.out.println(treeMap.headMap(high));
System.out.println(treeMap.tailMap(low));
}
}
WeakHashMap
WeakHashMap 的定义如下:
public class WeakHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V> {}
WeakHashMap 继承了 AbstractMap,实现了 Map 接口。
和 HashMap 一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key-value)映射,而且键和值都可以是 null。
不过 WeakHashMap 的键是弱键。在 WeakHashMap 中,当某个键不再正常使用时,会被从 WeakHashMap 中被自动移除。更精确地说,对于一个给定的键,其映射的存在并不阻止垃圾回收器对该键的丢弃,这就使该键成为可终止的,被终止,然后被回收。某个键被终止时,它对应的键值对也就从映射中有效地移除了。
这个弱键的原理呢?大致上就是,通过 WeakReference 和 ReferenceQueue 实现的。
WeakHashMap 的 key 是弱键,即是 WeakReference 类型的;ReferenceQueue 是一个队列,它会保存被 GC 回收的弱键。实现步骤是:
- 新建 WeakHashMap,将键值对添加到 WeakHashMap 中。 实际上,WeakHashMap 是通过数组 table 保存 Entry(键值对);每一个 Entry 实际上是一个单向链表,即 Entry 是键值对链表。
- 当某弱键不再被其它对象引用,并被 GC 回收时。在 GC 回收该弱键时,这个弱键也同时会被添加到 ReferenceQueue(queue)队列中。
- 当下一次我们需要操作 WeakHashMap 时,会先同步 table 和 queue。table 中保存了全部的键值对,而 queue 中保存被 GC 回收的键值对;同步它们,就是删除 table 中被 GC 回收的键值对。
这就是弱键如何被自动从 WeakHashMap 中删除的步骤了。
和 HashMap 一样,WeakHashMap 是不同步的。可以使用 Collections.synchronizedMap 方法来构造同步的 WeakHashMap。